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Entropy production and Lyapunov instability at the onset of turbulent convection

V. M. Castillo and Wm. G. Hoover
Department of Applied Science, University of California at Davis–Livermore and Lawrence Livermore National Laboratory,

Livermore, California 94551-7808
~Received 16 June 1998!

Computer simulations of a compressible fluid, convecting heat in two dimensions, suggest that, within a
range of Rayleigh numbers, two distinctly different, but stable, time-dependent flow morphologies are possible.
The simpler of the flows has two characteristic frequencies: the rotation frequency of the convecting rolls, and
the vertical oscillation frequency of the rolls. Observables, such as the heat flux, have a simple-periodic
~harmonic! time dependence. The more complex flow has at least one additional characteristic frequency—the
horizontal frequency of the cold, downward- and the warm, upward-flowing plumes. Observables of this latter
flow have a broadband frequency distribution. The two flow morphologies, at the same Rayleigh number, have
different rates of entropy production and different Lyapunov exponents. The simpler ‘‘harmonic’’ flow trans-
ports more heat~produces entropy at a greater rate!, whereas the more complex ‘‘chaotic’’ flow has a larger
maximum Lyapunov exponent~corresponding to a larger rate of phase-space information loss!. A linear
combination of these two rates is invariant for the two flow morphologies over the entire range of Rayleigh
numbers for which the flows coexist, suggesting a relation between the two rates near the onset of convective
turbulence.@S1063-651X~98!04612-1#

PACS number~s!: 47.27.Cn, 47.27.Eq, 47.15.Fe, 05.70.Ln
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I. INTRODUCTION

In order to transport heat more effectively, a fluid spon
neously makes a transition from quiescent, Fourier heat c
duction to convection—where currents convey warm fluid
the cold boundary and cool fluid to the hot boundary—a
sufficiently high Rayleigh number~dimensionless tempera
ture gradient!. At a much higher Rayleigh number, the sy
tem makes another transition, from steady to time-depen
convection. This transition was noted by Clever and Bu
@1# for an incompressible fluid, and by Rapaport@2# using
molecular dynamics. The steady-unsteady transition oc
at Ra'83104 for the fluid discussed here, and marks t
beginning of a periodic motion in which the rolls oscilla
vertically. Eventually, this periodic motion gives way to ch
otic flow as the vertical thermal plumes start to sweep fr
side to side.

Our simulations of the fully compressible Navier-Stok
equations for a viscous, heat-conducting fluid enclosed
tween two rigid, thermal boundaries in the presence o
body force reveal that, within a range of Rayleigh numbe
both laminarlike harmonic flow and turbulentlike chao
flow morphologies are stable solutions for the same Rayle
number. Figure 1 shows time sequences for the laminar
~left hand side! and chaotic~right hand side! flows—both at
the same Rayleigh number 23105. The sequence of the ha
monic flow shows the thermal plumes oscillating vertical
This frequency is in addition to the frequency of the flu
moving around the two counter-rotating convection ce
The harmonic flow is more effective in transporting he
The chaotic flow has at least one additional characteri
frequency—that of the plumes sweeping from side to si
disturbing the thermal boundary layer on the opposite s
The horizontal sweeping near the opposite thermal bound
causes fluid flow in a direction counter to the net flow
heat, resulting in a less efficient heat transfer. The additio
a third incommensurate frequency is, according to Ne
PRE 581063-651X/98/58~6!/7350~5!/$15.00
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house, Ruelle, and Takens’s idea of the route to chaos@3#,
enough to induce highly unstable chaotic motion.

The timed-averaged Nusselt number~dimensionless hea
flux! is plotted in Fig. 2 for flows with 83104<Ra<5
3105. Within the dual-morphology region, the Nusselt num
ber for the two-frequency periodic flow~higher! and the
three-frequency chaotic flow~lower! are joined by a hyster-

FIG. 1. Temperature contours for harmonic and chaotic flow
Ra5200 000. The time sequence appearing on the left shows
flow for ‘‘harmonic’’ convection. Observables, such as the Nuss
number, vary harmonically in time as the plumes penetrate the
posite boundary layers. There are two characteristic frequencie
this flow—that of the fluid being carried by the convection rolls a
that of the vertical oscillation of the plumes. The chaotic flow~se-
quence appearing on the right! has at least one additiona
frequency—that of the plumes sweeping side to side.
7350 © 1998 The American Physical Society
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PRE 58 7351ENTROPY PRODUCTION AND LYAPUNOV INSTABILITY . . .
esis loop. The upper branch of the loop continues from
steady-state region into the periodic region. The low
branch continues from the chaotic region to fully develop
turbulent convection. As the Rayleigh number is increa
quasistatically from a steady state, periodic convection
velops first. As the Rayleigh number is increased further,
system makes a transition to chaotic flow. The Nusselt nu
ber, as seen in Fig. 2, shows an initial drop along this p
followed by an increase with increasing Ra. The term ‘‘qu
sistatically’’ is used to mean that a well-developed state a
given Rayleigh number is used as an initial condition fo
run at a slightly different Rayleigh number. The simulation
allowed to run for several thousand sound traversal time
eliminate transient effects. The Rayleigh number can be
ied in our simulations by changing either the transport co
ficients ~which also varies the diffusion traversal times b
not the sound traversal time!, the temperature of the ho
boundary~which also varies the sound traversal time and
thermal expansion coefficient!, or the length scale~which
varies the diffusion and sound traversal times!. In all three
cases, a hysteresis is present, but when the length sca
varied, the range of the dual-morphology region is d
creased.

Corresponding experiments of turbulent convection us
mercury, a low-Prandtl-number~dimensionless ratio of vis
cosity to heat-conductivity! fluid, reported in Ref.@4#, shows
a ‘‘bump’’ in the Nusselt number–Rayleigh number relati
where the Nusselt number drops, at a point, with increas
Rayleigh number. This drop in Nusselt number is accom
nied by an apparent change in flow morphology, indicated
the temperature-fluctuation histogram at a probe fixed at
center of the cell. The temperature histogram goes from
dual-maximum profile before the Nusselt number drop t
single-maximum profile and has been interpreted, in the
sence of the ability to visualize the actual flow, as a cha
in the number of convection rolls in the system. This chan
in the temperature history profile is also seen in in our sim
lations, and corresponds to the transition from harmonic
turbulentlike flow. Another set of experiments, involving th
convection of gaseous helium@5#, describes transitions in th
flow morphology for Rayleigh numbers from 103 to 1011.
The onset of the ‘‘oscillatory’’ convecting flow is reporte
for Ra593104. Chaotic flow is reported for 1.53105<Ra
<2.53105. A drop in the Nusselt number is seen in the da
for the transition from the oscillatory to chaotic flow. Eve
though these experiments were not conducted to investi
the existence of a hysteresis in the Nusselt number or

FIG. 2. Time-averaged Nusselt and Rayleigh number for flo
in the dual-morphology region. The harmonic flows transport m
heat.
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presence of dual morphologies, a change in morpholog
noted in both, and the drop in Nu can be seen in the plot
the data, as discussed in Ref.@6#. The drop in the Nussel
number at the transition from periodic to chaotic convectio
present in distinctly different systems—two dimension
~2D! and 3D, low and high Prandtl numbers, and compre
ible and nearly incompressible fluids—are apparently univ
sal, and support the existence of a hysteretic loop joining
two morphologies near this transition. Dual morphology h
been reported in steady convection flows for both compre
ible @7# and incompressible@1# fluids.

II. ENTROPY PRODUCTION AND THE LOSS
OF PHASE-SPACE INFORMATION

Because the temporally periodic flow transports mo
heat, it must likewise produce entropy at a greater rate.
total internal entropy production is the integral over the s
tem volume of the internal entropy production per unit vo
umegi . According to local thermodynamic equilibrium wit
linear transport theory,gi is defined

Ṡi5E
V
gi dV, gi[2

qW •¹T

T2
1

s̄̄:¹uW

T
,

whereqW is the heat flux ands̄̄ is the stress tensor. This tota
internal entropy production can be made dimensionless
dividing it by the internal entropy production for the equiv
lent quiescent system~with heat conduction only!,

ṠND[Ṡi /ṠF , ṠF52WE
0

L

dy
qW F•¹TF

T2
,

whereqW F52k¹TF , ¹TF5yWDT/L, andW is the width of
the system. Figure 3~a! shows the time-averaged dimensio
less internal entropy production for various Rayleigh num
flows including the dual-morphology region. The dimensio
less entropy production is equivalent to the Nusselt num
~time-averaged quantities! in these simulations in theDx
→0 limit.

The chaotic flow loses phase-space information a
greater rate. The Kolmogorov entropy, the sum of the po
tive Lyapunov exponents(l1, quantifies this rate. For ou
simulations, however, it is not easy to obtain the ent
Lyapunov spectrum, and it is also not clear how well t
spectrum for our discrete approximation describes the c
tinuous system. Instead, we calculate the maxim
Lyapunov exponent and use it as an estimate of the rat
loss of phase-space information. To make this rate dim
sionless, the maximum Lyapunov exponentl1 is multiplied
by the sound traversal timets , the time for information to
traverse the height of the system. Figure 3~b! shows the di-
mensionless rate at which phase-space information is
l1ts , for various systems. In this case, the hysteretic loop
also evident, but with the upper branch now representing
rate for chaotic and turbulent flows.

From Figs. 3~a! and 3~b!, one can see that the differenc
in the dimensionless entropy production rates correspond
the difference in the dimensionless rate of loss of pha
space information for flows at the same Rayleigh numb
This implies a connection between the thermodynamic
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tropy production and the information entropy rate near
onset of convective turbulence. A linear sum of the two ra
@see Fig. 3~c!# connects the two morphologies over the ent
range for which they coexist. With the appropriate choice
the linear coefficient, the hysteresis in the linear sum
greatly reduced so that the linear sum appears to incr
continuously with Ra.

For higher Rayleigh numbers, within the turbulent regi
(2.53105,Ra), a scaling relation between this linear co
bination and the Rayleigh number,ṠND1al1ts;Ra2/9, is
suggested by the data. This relation is somewhat incon
sive because the data for our simulations only range a l
over one decade. Figure 4 shows a log-log plot of this lin
combination as a function of the Rayleigh number.

A scaling relation between the dimensionless heat fl
~equal to the dimensionless entropy production! and the Ray-
leigh number has been the subject of much investigat
Experimental studies of convecting helium gas@8# demon-
strate the existence of a scaling region where the convec
part of the heat flux is related to the Rayleigh number
Nu21;Ra0.28260.006. This is different from the ‘‘classical’’
result @9# relating the heat flux to Ra1/3, which is based on

FIG. 3. Entropy production rates for harmonic and chao
flows. ~a! The time-averaged dimensionless internal entropy p
duction rate. The harmonic flow produces entropy at a greater
~b! The dimensionless maximum Lyapunov exponent. The cha
flow loses phase-space information at a greater rate.~c! A linear
sum of the two dimensionless rates connects the harmonic and
otic flows over the entire range for which they coexist.
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the assumption of marginal stability at a thermal bound
layer. Numerical simulations of incompressible Boussine
fluids @10,11# also reveal a scaling relation close to the e
perimental one for Rayleigh numbers between 108 and 1015.

The ‘‘classical’’ result relating the dimensionless he
flux to Ra1/3 is based on the assumption of a thin therm
boundary layer across which the time-averaged tempera
changes byDT/2, whereDT is the change in temperatur
across the system. The thickness of the boundary layers,d, is
such as to just deny the instability leading to local conv
tion. The ‘‘local’’ critical Rayleigh number Rac
5rgd3/hk(DT/2), and theNusselt number Nu, can b
computed as the Fourier conduction across the bound
layer, qbl52k(DT/2)/d divided by the conduction acros
the system,qF52k(DT)/L, whereL is the height of the
system. By solving ford in terms of Nu, one obtains Nu
;(Ra / Rac)

1/3. This power-law relation has been develop
independently in at least two different ways@12,13#.

There are a number of theories that account for the de
tion from the classic1

3 value in the hard turbulence region
Castainget al. @8# proposed that a large scale fluctuatin
wind may stabilize the thermal boundary layer to yield the2

7

power-law relation. She@14# analyzed the Boussinesq equ
tions with the assumption that the central fluctuating te
perature field interacts strongly with the turbulent veloc
field. Shraiman and Siggia@15# analyzed the Boussines
equations with the assumption that thermal boundary laye
nested within the viscous boundary layer. Ching@16# used
the assumption that a large nonuniform shear influences
thickness of the thermal boundary layer.

The existence of this27 power-law relation between th
Rayleigh number and the dimensionless heat flux, along w
an exponential temperature distribution, are the main ind
tors of ‘‘hard’’ turbulence. This has been reported for tw
dimensional convection of a Boussinesq fluid@10,11,17#, and
is evident in our simulations for chaotic flows@6#.

III. COMPUTATIONAL DETAILS

To study the transition to turbulent convection, we sim
late the fully compressible Navier-Stokes equations fo
fluid with an ideal gas equation of state,Peq5rkBT5re,
enclosed between two rigid thermal boundaries separate
a distanceL, and in the presence of a body forceg. The

-
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FIG. 4. The dimensionless rate sum vs the Rayleigh numbe
a doubly logarithmic scale.
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vertical boundaries are periodic and have a length scale
responding to a cell with an aspect ratio of 2. With the Bo
zmann constant, the mean density, and the isochoric
capacity set to unity, the Rayleigh number for the system
defined as Ra5agDTL3/hk wherea is the thermal expan
sion coefficient, andh and k are shear viscosity and he
transfer coefficients. Because, for an ideal gas,a5T21, and
the body force can be assigned a magnitude such that a s
volume element of fluid moving from the lower, high
temperature boundary to the upper, low-temperature bou
ary gains a potential energy to exactly compensate for
loss in thermal energy (g5DT/L), the Rayleigh number can
be written as

Ra5
DT2L2

Thk
.

The Prandtl number Pr is set to unity for all the simulatio

A. Numerical methods

The continuum equations for the time development of
density, velocity, and internal energy per unit mass$r,uW ,e%
can be written in terms of the Eulerian derivatives at fix
space locations:

]r/]t52¹•~ru!,

]u/]t52u•¹u1~1/r!¹• s̄̄1g,

]e/]t52u•¹e1~1/r!@¹u: s̄̄2¹•q#.

It is, however, desirable to express the finite-difference fo
of these equations in conservative form with the mass d
sity, momentum, and total energy calculated from the co
sponding fluxes. Otherwise, the simulations can become
stable at long times. To avoid the shortest-wavelength ev
odd instability, a ‘‘dual’’ grid is used where the momentu
and total energy are updated on one grid and the densi
updated on the other. Along horizontal or vertical directio
the fluxes of these conserved quantities are calculated on
other grid.

Piecewise cubic interpolating polynomials, ‘‘cub
splines,’’ are used to determine the value of the state v
ables and their gradients on the other grid with high accur
~error of orderDx4 in the bulk andDx2 near the rigid bound-
aries!. For simulations with a grid spacing smaller than t
thermal and viscous boundary layer length, the lower-or
error is not believed to effect the rest of the calculatio
because the thermal and viscous transport are linear in
region. Because the state variables are known at the ver
of an equally spaced grid, the midpoint interpolant and g
dient reduce to

f 0̂5
f 11 f 2

2
2

h2

16
~M 11M 2!1O~h4!,

f 085
f 12 f 2

h
2

h

24
~M 12M 2!1O~h4!,

whereMi is the second derivative of the spline function
xi . The classic fourth-order Runga-Kutta method is used
integrate the equations in time. The time step in the simu
tions is governed by the Courant condition, taking into a
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count the sound speed, so that sound waves may be reso
For these simulations, periodic boundaries are used on
sides and rigid, no-slip, constant temperature conditions
used for the upper and lower boundaries.

The viscous stress tensors̄̄, in d dimensions, is defined

s̄̄5S hv2
2

d
h D ~¹•u!I%1h~¹u1¹ut!2PeqI% ,

where the equilibrium pressure is defined by the ideal
equation of statePeq5re, h is the shear viscosity,hv is the
bulk viscosity, andd is the dimension of the system. Th
system can be further simplified by allowing the bulk visco
ity to vanish, but the dimension of the system must be ca
fully considered. Although these simulations are compu
for a two-dimensional system (d52), we desire that quan

tities such as the viscous work¹u: s̄̄ be equivalent to those
of a three-dimensional system with a vanishing bulk visc
ity. Therefore, we sethv5h/3.

B. Internal entropy production

The total internal entropy production is calculated
starting with a well-established convection state and ave
ing the volume integral for over 103 sound traversal times. In
Fig. 3~a!, the upper branch of the hysteresis loop represe
the simple, periodically convecting systems, and is genera
by starting with steady convection and increasing the R
leigh number quasistatically. This simple periodic mode
about 10% more efficient at transporting heat. This effici
flow continues to a critical Rayleigh number where the Nu
selt number drops and the flow becomes turbulent. The
bulent flow morphology continues as the Rayleigh numbe
increased. It should be noted here that in this turbulent
gime, the dimensionless entropy production~identically
equal to the Nusselt number! is related to the Rayleigh num
ber by the2

7 power lawṠND;Ra2/7. As the Rayleigh num-
ber is decreased from this point, the lower branch of this p
is generated as the flow remains somewhat turbulent.
possible to generate either of these two different flow m
phologies by starting with different initial conditions withi
this hysteresis range. Toward the center of the hyster
range, Ra'23105, the different flows are insensitive t
rather large perturbations~on the order of 10%!. Near the
transitional Rayleigh number, the efficient flow is sensiti
to perturbation. This hysteresis persists as the grid is refin
and is therefore expected to exist in the continuum limit.

C. Lyapunov exponent

Our discrete approximation of the system uses a fin
number of variables to approximate its state. Each state v
able can be thought of as a degree of freedom in a mult
mensional dynamical system whose set of Lyapunov ex
nents $l i% has a cardinality equal to the number of sta
variables. Examples of Lyapunov spectra for various syste
can be seen in Ref.@18#. The spectrum describes the rates
which the phase-space volume grows or decays in time.
maximum Lyapunov exponentl1 indicates the chaotic na
ture of the system by indicating whether neighboring poi
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in phase space converge~for a stable system!, diverge~for a
chaotic system!, or remain close neighbors~for a neutrally
stable system! in general:

l1[ lim
t→`

1

t
ln

uD~ t !u
uD~0!u

,

uD~0!u→0.

The maximum Lyapunov exponent is also relatively easy
compute. From a well-established state the maxim
Lyapunov exponent is calculated. This is done by selectin
state ~at random! that represents a small perturbation, a
allowing both to evolve for a time step before uniform
adjusting all of the state variables so that the phase-sp
distance is equal to the initial perturbation@19#. By doing
this several thousand times, the perturbation direction rot
to give the eigenvector corresponding to the maxim
Lyapunov exponent. Once this alignment is established,
time-averaged Lagrange multiplier needed to readjust
phase-space distance is exactly equal tol1 . Figure 3~b!
shows l1ts for various Rayleigh numbers. Five hundre
sound traversal times are allowed to pass for the perturba
to establish itself, and another 500 sound traversal times
used for the time averaging. The hysteresis loop, in this p
goes counterclockwise. As the Rayleigh number is increa
from a steady state, the lower branch is generated until
transition to turbulence, which is indicated by a change in
flow morphology and a sudden jump in the dimensionl
maximum Lyapunov exponent. As the Rayleigh number
decreased,l1ts smoothly decreases along the upper bran
of the hysteresis loop.

IV. CONCLUSIONS

In this paper, we report on time-dependent convect
flows, with Rayleigh numbers in a region near the transit
to chaotic convection, in which two distinctly different, b
stable, flow morphologies coexist. A relationship is revea
between two important quantities that characterize these
hy
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equilibrium, time-dependent flows—the entropy producti
rate and the rate at which phase-space information is l
These relations are based on well-established flow sim
tions, so that the transient effects are minimized. The flo
are also, in general, stable and insensitive to random pe
bations.

The existence of this dual-morphology region and t
hysteresis loop in the dimensionless heat flux that conn
the two flow morphologies is also corroborated by the ex
tence of sharp discontinuities in Nusselt number data
ported for two independent experiments with two very d
ferent fluids—gaseous helium and liquid mercury. The
experiments not only support these claims, but suggest a
versality for this phenomena.

The scaling relation between the Rayleigh number and
linear sum of the entropy production rate and theK entropy
~rate! may shed light on the continuing investigation on t
relation between the dimensionless heat flux and the R
leigh number. Recently, a power-law relation between
Lyapunov exponent times a characteristic time of the sys
~like a sound traversal time! and the Reynolds number wa
proposed@20#: ^l&t0;Re0.459. This, along with the relation
between the Reynolds number and the Rayleigh number,
ther supports the work detailed in this paper.

Currently, a model of a double pendulum, with therma
conducting and thermally expanding masses immersed
constant-gradient temperature field, is being studied@21#.
The pendulum assists in transporting heat in a way tha
analogous to buoyancy-driven convection. Both a Raylei
like order parameter and a dimensionless entropy produc
rate can be defined for this system. Initial results sugge
drop in the entropy production rate at the transition to cha
although a dual-mode region is not evident.
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